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We consider Lagrangian stochastic modelling of the relative motion of two fluid 
particles in the inertial range of a turbulent flow. Eulerian analysis of such modelling 
corresponds to an equation for the Eulerian probability distribution of velocity-vector 
increments which introduces a hierarchy of constraints for making the model 
consistent with results from the theory of locally isotropic turbulence. A nonlinear 
Markov process is presented, which is able to satisfy exactly, in the statistical sense, 
incompressibility, the exact results on the third-order structure function, and the 
experimental second-order statistics. The corresponding equation for the Eulerian 
probability density of velocity-vector increments is solved numerically. Numerical 
results show non-Gaussian statistics of the one-dimensional Lagrangian probability 
distributions, and a complex shape of the three-dimensional Eulerian probability 
density function. The latter is then compared with existing experimental data. 

1. Introduction 
The motion of fluid particles in a turbulent flow has been investigated by many 

authors by using the theory of continuous stochastic processes; this has proven to be 
a simple and powerful modelling technique. It has been extensively applied to describe 
the motion of one single particle in an inhomogeneous and unsteady large-scale 
turbulent field, the solution giving results on the mean concentration of a passive scalar 
advected by the turbulent flow. Analyses of statistical turbulence, a stochastic 
description, and recent developments related to such a field can be found in Monin & 
Yaglom (1971, 1975), Durbin (1983), van Dop, Nieuwstad & Hunt (1985), Sawford 
(1986), Novikov (1986), Thomson (1987), and references therein. Such models consider 
the velocity of a fluid particle as a stochastic process subjected to a large-scale sweeping 
and a random acceleration. They are based on the fact that the acceleration of a fluid 
particle is local in time and space, and can be assumed to be an uncorrelated random 
forcing. This also implies that the very small-scales viscous interaction is simply 
neglected, assuming the Reynolds number is sufficiently large. 

When we extend the theory to consider the motion of a pair of particles, the 
modelling can be seen as the superposition of a relative motion and the motion of one 
single particle, or the particle centroid (Gifford 1959; Novikov 1966; Durbin 1980; 
Thomson 1990). The single particle, or particle centroid, contribution is modelled as 
described above for a single-particle system. The relative motion reflects more directly 
the internal turbulent structure, because of the appearance of an internal lengthscale 
(particle distance), and its description permits the introduction of concepts developed 
within the theory of turbulence (Monin & Yaglom 1975). The description of the 
motion of particle pairs can give information on the concentration fluctuation, as well 
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as its mean value. Recent results on particle-pair modelling are reported in Durbin 
(1980), Sawford & Hunt (1986), Thomson (1990). 

All these models are purely statistical, in the sense that the equations of motion are 
not used ; moreover, Lagrangian measurements are still very difficult to perform and 
the accuracy of the models can be inferred only from few global results. 

In the present work, we focus attention on the modelling of the relative motion of 
two fluid particles in the inertial range of an incompressible turbulent flow. Such 
modelling can then be coupled with a single particle description when a complete 
particle-pair model is required. The choice of relative motion in the inertial range is 
because it represents the Lagrangian counterpart of the Eulerian theory of locally 
homogeneous and isotropic turbulence (Monin & Yaglom 1975), expressed in terms of 
velocity-vector increments, whose results will be applied directly. 

The relative motion of a pair of particle is modelled as a stochastic Markov process. 
The Markovian assumption cannot, at present, be derived from the equation of 
motion. Nevertheless, this assumption is consistent with experimentally observed 
similarity laws in Lagrangian and Eulerian descriptions (Monin & Yaglom 1975), and, 
as will be shown below, is able to give the correct value, derived by the equation of 
motion, for the third-order Eulerian structure function, and the exponential asymptotic 
behaviour of probability distributions supported by experimental and numerical data. 

It is shown that a Lagrangian Markov model for relative velocity can be associated 
with an equation for the Eulerian probability distribution for velocity-vector 
increments between two points. From this equation we can obtain a hierarchy of 
constraints which correspond to satisfying the Eulerian results on three-dimensional 
statistical moments of any order. Particular attention will be given to incompressibility 
condition, and to Kolmogorov’s (1941 b) exact result on the third-order structure 
function derived directly from the Navier-Stokes equations. The effect of intermittency 
on Eulerian statistics and on turbulent diffusion is expressed in terms of the statistics 
of the dissipation fields, and is considered thorough the analysis. 

In relation with the presented theory, a nonlinear Markov model is introduced and 
numerical results are presented. Such modelling is an extension of that introduced by 
Novikov (1989). A similar model was introduced previously by Thomson (1986; 
reported also in Thomson 1990), and, with more substantial differences, by Durbin 
(1980); these models were derived by similarity scaling arguments. On the other hand, 
one aim of this paper is to ensure an Eulerian quantitative consistency with Lagrangian 
stochastic models. 

Regarding another aspect of the problem, it is of great interest to reproduce the 
probability distribution of velocity differences between two fixed spatial points, for the 
inertial range of turbulent flows, because it represents in many respects an exhaustive 
representation of turbulence small-scale statistics. 

In the present work, the partial differential equation for the Eulerian probability 
density function of three-dimensional velocity increments corresponding to stochastic 
modelling is derived. Such an equation, when written in its general form, is composed 
of a transport term and a particle acceleration operator. An appropriate form of the 
operator can be constructed, independently from Markov modelling, for matching 
with real physics. We solve the equation corresponding to the Markov model 
proposed, analytically for the asymptotic cases and numerically for the complete 
solution. 

In 92, the Lagrangian approach to the stochastic modelling is introduced, and in $ 3  
these arguments are transferred to an Eulerian description, and, using the structure- 
functions formalism, the modelling constraints are derived. In 94, a Markov model is 
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presented, and in $ 5  its Eulerian counterpart is analysed. Sections 6 and 7 present and 
discuss, respectively, the Eulerian and Lagrangian numerical results. In the Appendix 
we report, for completeness, the proof of the theorem which permits the connection 
between Lagrangian and Eulerian descriptions of turbulence. 

2. Markovian modelling and Lagrangian statistics 
Let us consider the relative motion of two fluid particles, in the inertial range of a 

turbulent flow, as a stochastic process for the Lagrangian trajectories. The stochastic 
differential equation for the relative motion (Novikov 1989; Thomson 1986) can be 
written as 

u(t) and r(t) being, respectively, the relative velocity and distance of the two fluid 
particles, and t is the time variable. The function a is the external acceleration, or 
relaxation term, due to the turbulent motion of scales larger than Y = IrI, the term dy 
is the random forcing representing the jumps in the velocity due to the unresolved part 
of the turbulent flow, i.e. the underlying random turbulent motion which is not 
represented in the relaxation term. The statistics of dp are given by the probability 
density q(u  I u, r )  of a jump u in velocity, from the state (u, r), in a unit of time. Denoting 

du = a(t,r,u)dt+dp, dr  = udt, ( l a ,  b) 

a l t z . . . i n ( ~ ~ r )  = ~ ~ ~ v i ~ . . - V i , ~ ( ~ l ~ , ~ ) d ~ ,  (2 4 

(2 b) we have dptl d,uip.. . dp. a ,  = m!"? a , a  2 . . . a ,  . dt + O(dt2), 
where the overbar stands for the probabilistic expected value. The mean value of the 
random forcing can be inserted into the relaxation term a ,  and we assume, without loss 
of generality, that m:l) = 0. 

Assuming the system (1) to be Markovian it is possible (Novikov 1989; van Kampen 
1981) to write the Chapman-Kolmogorov equation, and, from it, the master equation 
for the Lagrangian probability density P,(u, r I t ,  r,,), the probability density at time t 
of the variables u(t) and r(t) given that r(0) = r,,. The master equation is written as 

s M<TL? 

where the left-hand side is the continuity equation in phase space, (aP,/at) + V - (FP,), 
the operator V acting on the 6D space {r ,  u> and the forcing F given by [u, a]. The 
initial condition for equation ( 3 )  is given by PL(u, r 1 0, r,,) = PE(u I t ,  r )  6(r- yo), where 
PE(uIt,r) is the Eulerian probability density at time t of the relative velocity u 
between two fixed points at distance r .  

Using smooth-u dependence of PL and q, equation ( 3 )  can be expanded in Taylor 
series, obtaining the Kramers-Moyal expansion for the Lagrangian probability density 

For Gaussian forcing the derivation is different than for jump processes (see details in 
van Kampen 1981), but we can formally put rn() = 0 for n > 2, obtaining the correct 
equation for this case 

which is known as forward Kolmogorov, or Fokker-Planck, equation. 
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From (4) we can derive the general equations for statistical characteristics of the 
flow. Multiplying (4) by 2(v)u1L(u), where 2 and % are arbitrary tensor functions, 
integrating over (v, u) and using integration in parts, we obtain 

where the operation ( ), means averaging over the Lagrangian ensemble of 
trajectories. This equation is equivalent to (4), which can be obtained from (5) by 
choosing &-functions for 8, % (see the Appendix and van Kampen 1981). At the same 
time, for various choices of 9, %, we can get from ( 5 )  a hierarchy of equations for the 
evolutions of the moments of u(t) and r(t) and more general statistical characteristics. 

For physical reasons, particular interest is generally devoted to the second-order 
statistics of r2 = lrI2 = ri Ti and u2 = IuI2 = ui ui. From (5)’ assuming 2 = r2 and 

= I ; 92 = ri and 42 = u i ;  9 = 1 and 02 = u2, we get, respectively, 

a 
- ( Y ~ ) ~  = X u i  at  (6 4 

(6 b) 
c? 
at 
- (uir i )L = ( u 2 ) L +  (a i r i )L ,  

(6 c) 
a 
at 
- ( U 2 ) > ,  = x u ,  ai>L + (m:;’)L, 

where the fact that for locally homogeneous and isotopic turbulence ( u < ) ~  = 0 has 
been used. In this case, the solutions of (6) give (Monin & Yaglom 1975), asymptotically 
for fi t3 + r:, 

( r 2 ) L  = A p - t t 3 ,  ( U ~ P ~ ) ~  = Au,ct2,  ( u ’ ) ~  = A U d ,  (7u-4 

where A ,  A ,  A , ,  are dimensionless coefficients and E is the mean rate of energy 
dissipation (see also results from the numerical calculations reported in $7). Equations 
(7) correspond to the experimentally supported Richardson law (Monin & Yaglom 
1975) and to Kolmogorov’s (1941 a)  similarity arguments. 

Equations (7) show that turbulent diffusion is accelerated with respect to a 
Brownian, molecular, diffusion where r2 - t ,  but turbulence can be seen as producing 
such a diffusion in the velocity space. For this reason, the first attempt to get (7) from 
the model (1) has been made by considering the relative velocity u evolving as a 
Brownian motion; this means a = 0, and Gaussian jumps with m:;) = g c Sij, g being a 
dimensionless constant (Monin & Yaglom 1975). In this case we get from (6), for large 
times, A ,  = 3A,  = 3g (see also subsequent discussion in 57 and tables 1 and 3 ) .  

Equations for higher-order moments of u(t) and r( t )  can be obtained from ( 5 ) ;  in 
particular it is easy to obtain the purely kinematical relations 

a 
- ( r n ) ,  = n(u, ri rn -2 )L .  
at (8 4 

The equation for the moments of the relative velocity involves the higher-order 
moments of the random forcing. In general, assuming 3’ = 1 and @ = un in ( 5 ) ,  we 
have 
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which becomes, for Gaussian forcing, 

a 
- (u") ,  = n (aiui~"-2),+$n(n-2) ( ~ " - ~ u ~ u ~ r n ~ ~ ) ) , + ~ n ( u " - ~ m ~ ~ ' ) , .  (8c) at 

A proper non-Gaussian forcing will be related to the turbulent intermittency of the 
Lagrangian velocity field (Novikov 1989, 1990). For a description of Lagrangian 
variables, including intermittency, from the dimensional argument, we have the general 
scaling (Novikov 1989) 

where el is the rate of energy dissipation averaged over a sphere of radius Z 
(Kolmogorov 1962; Monin & Yaglom 1975), such that the statistical averaging 
(t.,) = t.. From the scaling law (9), using the measure Z2((t) = ( r 2 ) , ,  we find that the 
Lagrangian moments take the form 

r ( t )  - (€, t 3 ) ) " 2 ,  u( t )  'v ( E l  t y ,  (9) 

( r " ) ,  - {$/') t 3 " i 2 ;  (u") ,  - (er/2) t n l z ;  (10a, b) 

thus, the effect of intermittency is expressed in terms of the statistics of the dissipation 
field. Relation (10) can be made more explicit by using the scale similarity of 
breakdown coefficients. Breakdown coefficients are defined by 

q r , l  = Er/% (1 1) 

and are also referred to as scale-invariant multipliers (Novikov 1969~1, 1971, 1990; 
Monin & Yaglom 1975; Chhabra & Sreenivasan 1992); their statistics are expressed 
in terms of a scalar function p ( p )  as 

(qTql) = (l/r)"% 

(€?) = E p  t .P (L /pW 

Assuming 6 ,  = e, where L is an appropriate turbulence integral scale, from 
write 

Here the kp are coefficients which may depend on the large-scale struc ure of the 
turbulent flow, and the function p ( p )  represents the intermittency corrections to the 
classical similarity scaling. Using (1 3) the statistics of the Lagrangian characteristics 
can be written (Novikov 1990) in the usual formalism as 

Here T - L213ep1i3, is the integral timescale, and (14) may contain a constant depending 
on the large-scale motion; also, we used the obvious fact that p(0) = 0 and the 
condition p(1) = 0 (Novikov 1969a). A universal form of the intermittency correction 
function p ( p )  is not known, at present, but several phenomenological models 
(Kolmogorov 1962; Meneveau & Sreenivasan 1987; Novikov 1990; Chhabra & 
Sreenivasan 1992; Saito 1992) can give good approximation. 

Equation (14) constitute the basic scaling relation for Lagrangian variables including 
intermittency corrections. We want to point out that the Lagrangian second-order 
moments have a linear dependence on the mean rate of energy dissipation t., and are 
not subjected to an intermittency correction. In this sense, they can have a universal 
nature playing the analogous role of the third-order moments in the Eulerian 
description. 
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3. Structure functions and Eulerian probability 
The Eulerian description of the local scales of turbulence in physical space is well 

suited to the use of the difference in velocity between two points fixed in space. 
Statistical moments of such a difference are the structure functions of turbulence, 
which can be expressed in simple terms including the condition of incompressibility 
and of local homogeneity and isotropy. 

Let us write the velocity difference u(r) between two points, fixed in space, separated 
by a distance r, as 

(15) 
where n, = r i rP1  is the unit vector in the r-direction, ti, = uini is the longitudinal 
component of velocity, and 27, = ui-u,n, is the transversal velocity, which is a vector 
contained in the plane normal to Y. 

The second-order structure function (ui  uj) ,  where the operation ( ) means Eulerian 
ensemble averaging, can be expressed, because of local isotropy, in terms of only two 
scalar functions of r :  

(16) 

From (1 5), (16) it follows that longitudinal and transversal components of velocity are 
uncorrelated : 

However, they are not statistically independent (see (23)). The two components are 
physically different, even simply because of incompressibility. Loosely speaking, a 
transversal velocity difference signifies the presence of a vortex, whereas a longitudinal 
difference dominates in a saddle (deformation) region or when one point falls into 
a streaming region. 

The condition of incompressibility can be transformed, in the statistical sense, into 
the structure-function condition (Monin & Yaglom 1975) 

ui(r) = u, n, + 6,. 

( u, u j )  = A(r)  Sij + B(r) ni nj. 

(u,  6, )  = 0. (17) 

a 
-(U,U,) = 0, 
ari 

which corresponds to the well-known relation A’ + B’ t. (2/r) B = 0, with the prime 
denoting a scalar derivative. It can be shown (Novikov 1992) that condition (18) is not 
only necessary, but also a sufficient condition for incompressibility in the statistical 
sense. 

From (16) and (18) we can write the general expression for the second-order 
structure function which satisfies incompressibility : 

( u i u j )  = 

depending on a single scalar function of a scalar argument, the variance of the 
longitudinal increment of the velocity, (u : )  ( r ) .  

The third-order structure function can be written, because of local homogeneity and 
isotropy, and incompressibility, in the general form 

(ui uj i l k )  = - 2(C+ r C )  (n, Sjk + ni Si, + nk Sij) + 6(rC  - C )  n, nj nk, (20) 
where the scalar function C(r) alone characterizes all the moments. For the third-order 
moment we have the Kolmogorov (1941 b) result 

( u l )  = -$w, (21) 
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derived directly from the Navier-Stokes equations in the inertial range of decaying 
turbulence. The same result was obtained for statistically stationary turbulence with 
large-scale random forcing (Novikov 1964). From (21) we get for the function C in 
equation (20) C(r)  = er/15. Equation (20) can then be rewritten in the final form 
(Novikov 1989) 

Equation (22) gives the third-order correlation between longitudinal and transversal 
velocities 

( u i u j u k )  = -&e(ridjk+rjSik+rkSij) .  (22) 

(u, iii iij) = - + - ( d i j  -ni nj) ,  (23) 

showing their statistical dependence. 
The general expression for the structure functions of any order can be written by 

using the intermittency formalism introduced in the previous section. For the second- 
order longitudinal velocity variance, introduced in (19), we have 

(u,") = Co(er)2'3(L/r)"2'3). (24) 

The intermittency correction for second-order moments is small (indicatively, 
Meneveau & Sreenivasan's 1987 model gives p($) = -0.0271); the coefficient Co has 
been estimated from experimental results, generally neglecting the intermittency 
correction, as C, = 1.6-2.4. High-order statistics cannot, in general, leave aside 
intermittency influence, and are expressed by the following scaling, which is obtained 
from (13) and the Kolmogorov relation u(r) - ( E ,  r)l13 (see (9)) : 

Equation (21) is the only exact result for structural functions of a velocity field 
derived from the Navier-Stokes equations. This is because third-order moments have 
a linear dependence on the dissipation rate e and are not subject to correction of the 
similarity law due to intermittency phenomena (Monin & Yaglom 1975). 

A first attempt to correlate the stochastic model (1) to the Navier-Stokes equations 
has been presented by Novikov (1989). In order to do this, the relation between 
Lagrangian and Eulerian probability distribution functions (Novikov 1969 b) can be 
used. Consider the Eulerian probability distribution density PE(u I t ,  r) ,  the probability 
density at time t of the velocity difference u between two fixed points at distance r .  We 
have the theorem 

PE(U I t ,  4 = PL(4 r I 1,  ro) dro, (26) s 
which is valid, in homogeneous turbulence, if the boundaries do not depend on the 
velocity field (i.e. it is not valid for free surface flow, or for motion into a smooth 
waterbag). A complete proof of the theorem (26), due to Novikov (1969b), is reported 
in the Appendix. 

Using relation (26) we can integrate (4a) or (4b) over the initial particle separations 
ro and obtain a corresponding equation for PE which can be written as 

ap, ap, a 
-+Ui -+- ( z iPE)  = 0, 
at ari aui 

where it is the operator of relative acceleration conditionally averaged with a given 
velocity increment u. The first term in (27) is zero for statistically stationary turbulence. 
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The operator a is introduced in order to write a general equation for the Eulerian 
probability density, independently from its derivation from a Markovian modelling. A 
similar procedure of conditional averaging was used in the description of the turbulent 
vorticity field (Novikov 1993). In correspondence with (4) the operator ?i acts as 

From (27), multiplying by uj and integrating over u, we get 

a 
hi 
- ( U i  U j )  = (tij) = 0, 

where the incompressibility condition (18) is used. Equation (29) gives the 
incompressibility constraint on the operator a. Unconditionally averaging of this 
operator means averaging over the velocity increments. 

Multiplying (27) by ul ulc and integrating we get the second equation of the hierarchy: 

(30) 

Substitution of (22) gives 
$ € s i j + ( u i ~ j ) + ( u j E i )  = 0. 

Equation (31a) is a further constraint on the operator a, which ensures that the 
probability distribution, solution of (27), satisfies the third-order moments result (22), 
consequent from the Navier-Stokes equations. With the definition (28) of the operator 
a, (31) then becomes 

( 3  1 b) 

The model of pure diffusion (a = 0) in velocity space, discussed in Monin & Yaglom 
(1975,92), satisfies condition (29) but does not satisfy the dynamical condition (31 b). 
In particular, summation in (3 1 b) over i = j with a = 0 gives g = A ,  = -$ < 0, which 
contradicts the physical sense of turbulent diffusion (7). 

Equations for higher-order moments can be obtained by using an analogue of 
formula ( 5 )  in the Eulerian description. The next equation of the hierarchy reads 

$€aij + (u i  a,) + ( u j  a i )  = - (m$’). 

(32) 

this and subsequent ones can be used to connect the operator a with higher-order 
moments of the velocity field, which are more influenced by the intermittency effects. 
In this case, less exact quantitative information is known, due also to the increasing 
complexity of the tensorial form of high-order moments. Nevertheless, any 
experimental or theoretical result can be handled in the same way as presented for 
second- and third-order moments, giving further constraints on the modelling and 
improving its representation of the real physics. 

4. A Markov model 
In order to construct a model, in the framework of the stochastic system (l), we must 

define the relaxation function a, and the statistics of the random forcing dp. We 
consider here a generalization of the model introduced by Novikov (1989). 
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The function a is given by the ratio of the actual velocity value to a typical timescale 
a - - u / T ,  in such a way that the velocity, in the absence of forcing, is able to decay 
to zero (relax) with a timescale given by 7. For a three-dimensional flow, the relaxation 
can be written as 

C 
ai = --(u,+yu,n,), 

7 (4  (33) 

where c and y are two dimensionless coefficients of the model. The parameter y + 0 
gives a different relaxation for longitudinal and transversal components of velocity. 
These components have different physical natures, and relaxation is in general non- 
isotropic. The instantaneous (local) timescale, ~ ( r ) ,  for two particles separated by a 
distance Y can be defined by dimensional arguments: 

7(r) = CC' ( u 2 ) .  (34) 

As a first approach, we assume the forcing as Gaussian distributed. In this case, the 

(35)  

Here a and b are the non-dimensional coefficients of longitudinal and transversal 
forcing respectively (the coefficient a must not be confused with the relaxation function 

second-order tensor of forcing (diffusion in velocity space) has the general form 

mt1 = mj;) = €(an, nj  + h(S,, - yli  nj)) .  

ai(u, r ) ) .  
In the Eulerian representation this corresponds to the operator 

The incompressibility condition (29) is satisfied trivially. The dynamical condition (3 1) 
implies the following relations between relaxation and forcing coefficients : 

( ~ + s ) c  = (3+s)(b+$), (27-S)C = (3+s)(a-b). (37) 

Here, in general, s = $-p($) is the exponent of the power law (u ' )  - r'. Note that 
incompressibility condition (1 8) can be rewritten as 

(S2) = (s+2)(u,2), (38) 

where 22 = (22, 22,)'" is the module of the transversal component of velocity. 
The random forcing, representing the unresolved part of the turbulent flow, is 

isotropic only if a = b, which means y = fs. This shows that the isotropy of relaxation 
and the isotropy of forcing are mutually exclusive, a result which is due to (31), and 
so to (22). Intuitively, it seems more reasonable, from a physical point of view, that 
forcing would be isotropic but we can give no proof in support of such an assumption. 

The actual value of ( u 2 )  appearing in (34) can be calculated by (19), using (24) with 
the experimentally estimated coefficient C,. The value C, z 2 will be used in the 
numerical calculations. 

5. Eulerian probability distribution equation 
The Markov model introduced above corresponds to an Eulerian probability 

distribution for the vector of velocity increments which is a solution of the partial 
differential equation (27). Such a distribution satisfies the condition of incompressibility 
(18) and the dynamical result for the third-order moment (22) derived from the 
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Navier-Stokes equations. In this framework, Markov modelling can be used for the 
derivation of an Eulerian probability distribution consistent with theoretical and 
experimental results on the local structure of turbulence, 

In general, the solution of (27), with different assumptions on the function it, gives 
the probability distribution of velocity-vector increments. The knowledge of such a 
distribution is important for advancing the theoretical description of turbulence, and 
for practical purposes as well. For example, the subgrid-scale modelling in large-eddy 
simulations requires the definition of the 'stress' tensor 7 ,  which ultimately can be 
expressed in terms of velocity-vector increments : 

7Jx) = - I.j. = - ui(x" - x') ui(x"- x')f(x, x') , f (x,  x") dx" dx', (39) 
2 's 

where is the absolute velocity vector, = K(x' ) f (x ,  x') dx' is the filtered velocity 
field, andfis the filter function, determined by a numerical scheme. According to the 
concept of conditional averaging of the Navier-Stokes equations (Novikov 1993), we 
have to average the product of velocity increments in (39) conditionally with a fixed 
filtered velocity field. Also, the solution of (27) gives the Eulerian counterpart of 
Lagrangian diffusion models, such as the one introduced in the previous section, 
which, in this way, can be experimentally verified without involving Lagrangian 
measurements. 

For locally homogeneous and isotropic turbulence PE(u I r) is generally a function of 
three independent variables, ur, 6, and r .  In these variables, and by introducing the 
model of the previous section, (27) can be rewritten as 

with 7(r)  defined by (34). We make the problem dimensionless normalizing velocities 
with ( ~ r ) ' ' ~ .  For further simplification, we neglect the intermittency correction and 
assume that the classic similarity scaling (Kolmogorov 1941 a, b) is valid. In this case 
the r-dependence of the probability distribution is completely included in the 
normalization term. With these assumptions the new dimensionless variables are 

x = ~ ~ ( e r ) - ' ' ~ ,  y = 6(er)-'I3, P(x,y)  = (cr) PE(ur, ti I v), (41) 

and the moments of the velocity differences can be then computed from 

( ~ " J J " )  = 2x Lrn dy y rm dxx"ymP(x,y), 
-m 

representing a linear integration along x, and axisymmetric integration along y .  

form as 
The equation for the Eulerian probability distribution can be written in final 

1 (y+$y+l)x -- gx +-y -- x+--((y+3) C 1: (3  d, )K ( c, P 
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with boundary conditions 
Y+O when x++oo, 
Y+O when y++co, 

a P p y = O  at y =  0, 

and the normalization condition 

79 

(44) 

which makes the system non-homogeneous. The constants a and b are given by (37) 
(with s = i). The parameter C,  is derived from the definition of relaxation time (34), 
and is equal to C ,  = (xZ+y2), that is 

C, = 27t lm dy y SI,” dx(x2 +y2)  P. 

It is important to note that the parameter C, is determined by the solution B of (43), 
so condition (46) makes the complete system nonlinear and integro-differential. 
Eventually, the solution will be determined such that C, matches with its experimental 
value (see (19) and (24)) C,  = y C o  = p. 

From the system (43)-(46) it is easy to obtain the moment equations. Multiplying 
(43) by 1, x, and x2, and integrating, in the sense of 

27t/rdyy/:Idx ..., 
we get, respectively 

(x) = 0, (x”>-$(y2) = 0, 3(x3)-2(xy2)+$ = 0. (47 a-c) 

The last two formulae correspond, respectively, to the incompressibility condition (38) 
and to the dynamical relation (22). 

The left-hand side of (43) is composed of three physically different contributions: the 
last three terms represents diffusion in velocity space, the terms containing the constant 
c are the local relaxation, the others represents transport terms derived from equation 
(1 b). The diffusion term is of order - u-’ (where u indicates either x or y )  and is 
dominant close to the origin, where the probability distribution reaches its maximum 
values. Transport is - u, and dominates asymptotically the tails of the distribution. 
Relaxation, - 1, is intermediate. From these estimates of relative contributions it is 
possible to solve the equation in the asymptotic cases when one or two of such 
contributions can be neglected. 

1, the transport term can be neglected from (43). 
The solution of the dzffusionlrelaxation equation is Gaussian : 

Close to the origin, where x2 +y2 

In this case, the constants a and b must be evaluated without the +f  term in (37), 
because it derives in (3 1) from the transport term, which is now neglected, imposing the 
correct value for the third-order moments which are now zero, and otherwise condition 
(46) does not hold. This solution is symmetric with respect to the variable x and, even 
though it satisfies incompressibility, it does not satisfies the dynamical constraint on the 
third-order moment of the probability distribution. 

In the far asymptotic case, when x2+y2  % I, we can consider the pure transport 
regime. This represents pure inertial motion under the condition of incompressibility, 



80 G .  Pedvizzetti and E. A .  Novikov 

8 

6 

Yl 4 

2 

0 

XI 

FIGURE I .  Characteristic curves of the Eulerian probability distribution equation in the 
asymptotic regime, when the diffusion contribution is neglected. 

and does not depend on the choice of relaxation and forcing operators. This case has 
been studied in detail by Novikov (1992), where it is shown that the function 

is a solution for any function F( .). It is worth noting the unusual combination of the 
velocity components in the argument, which demonstrates the physical difference 
between longitudinal and transversal velocity increments. 

In the asymptotic case, when still x2 + y 2  + 1 but only diffusion is neglected, we can 
consider the no-dzjiision regime. This regime is also a solution of the complete equation 
(43) with c = + and y = f (in this case (37) gives a = b = 0). Under this condition, (43) 
loses its elliptic character and becomes a first-order partial differential equation. Then 
the solution is obtained (up to an arbitrary function of a scalar argument) by 
integrating along the characteristic curves, starting from a curve in the (x, y)-plane 
where the solution is known, by using 

In this case, the variables can be scaled by c/C,, eliminating c/C, from equation. 
Writing 

c c 
x = - x  1 9  Y =-.Y1, %GY> = c, c2 

and putting y = +, we can write 

the characteristic curves derived from the first equality in (51) are reported in figure 1. 
As we expected a focus is localized at the origin, owing to the elimination of the 
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FIGURE 2. Three-dimensional Eulerian probability density function in the limit case in the absence of 
diffusion, and parameters c = +, y = 8. Horizontal and vertical axes represent, respectively, the 
longitudinal and the module of the transversal normalized velocity increments. Equi-probability 
curves are shown by continuous lines at levels lo-’, lo-*, . . . , lo1, dashed lines are intermediate. 

diffusive term. Also a marked asymmetry, with respect to longitudinal velocity, is 
observed as a consequence of the dynamical constrain (22), and another unexpected 
focus is found for a negative value of xl. A solution of (50), for c = + and y = $, is 
determined by solving equation ( 5  1) with a fourth-order Runge-Kutta method along 
the characteristics, using stretched coordinates in order to have a proper resolution 
close to the origin, where an integrable singularity is present. The solution can be 
obtained by fixing the value of the function on one arbitrary curve which intersects all 
characteristics curves. The line x, = -f has been chosen for numerical stability; the 
value of the solution on this line is fixed following the far-asymptotic solution 
(Novikov 1992). This gives %( -g,y,) = Ky;314 exp ( -y , ) ,  determined from (49) to 
match the asymptotic shape of experimental measurements of a one-dimensional 
probability distribution of longitudinal velocity increments (Gagne, Hopfinger & 
Frisch 1988 ; Kailasnath, Sreenivasan & Stolovitzky 1992; Praskovsky 1992 a). Then, 
when the solution in {x,,y,} is obtained, we have to impose the condition (46), C, = 

( x 2 + y 2 ) .  Combining this with the relation 

which is due to the scaling of (51), we obtain that the eventual value of C, is given by 

c, = c”y ,y ;+y; ) l i3 .  (52) 

By imposing the value c = y, and using (52), such a solution satisfies (43) and, 
consequently, represents a three-dimensional probability density function of velocity 
increments which satisfies incompressibility, Kolmogorov’s (1 94 1 b)  result on third- 
order moments, and classical similarity for all moments. In the present asymptotic case 
we get C, = 1.65, which is much less than its experimental value. The solution is 
reported in figure 2 in the (x, y)-plane, where equi-probability contours are plotted 
(continuous lines) at levels lo-’, lo-*, . . . ,lo’. We can observe that the vectorial shape 
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FIGURE 3 .  One-dimensional kulcrian probability density function of the longitudinal normalized 

wlocity incrcmunt, in the limit case in the absence of diffusion. and paramctcrs c = y,  y = +. 

is very articulated, representing the non-trivial statistical dependence between 
longitudinal and transversal velocity increments, as introduced in (17) and (23). The 
one-dimensional probability density function of the longitudinal velocity is reported in 
figure 3 ; we can observe the unrealistic shape close to the origin, the asymmetry which 
gives the Kolmogorov law (x3) = -0.8, and exponential tails. It is interesting to note 
that the ratio between the asymptotic slopes is around 1.4 as observed experimentally 
(Praskovsky 1992 a). The Lagrangian counterpart of this limit situation loses physical 
sense. However, this Eulerian distribution has a meaning as an asymptotic result, 
which helps to perform the full solution of (43) to which next section is devoted. 

A fundamental question that the Eulerian analysis can answer is about the 
reafizability of the flow field corresponding to a given Lagrangian stochastic model. It 
means, in general, that we have to verify the existence of a solution of (27). By 
realizability, in this framework, we mean the existence of a solution PE(u I r )  2 0, which 
satisfies incompressibility (18) and the third-order tensor expression (22). In the present 
modelling, this corresponds to the existence of a solution g ( x , y )  2 0 of the system 
(43)--(46). Also, from (52), for example in the characteristics solution, it can be seen 
that once the model parameters are fixed (in this case c) then the value of C, follows. 
Vice versa, if we fix a value for C,, then only one value of the model parameter c realizes 
such condition. From this we can expect that, in the full solution of (43), once we fix 
C ,  to its experimental value, then the model parameters c and y cannot take any value 
but will be determined in consequence. The Eulerian analysis permits the determination 
of the existence and the characteristics of the flow field assumed implicitly by stochastic 
models. 

6. Eulerian numerical results 
In this section, we consider the solution of the complete system (43)-(46) for the 

Eulerian probability density function. Firstly, we shall describe the numerical method 
adopted and then we shall present and comment the nurnerical results. 

The system (43)-(46) is composed of different parts. Equation (43) is a homogeneous 
linear one with varying coefficients partial differential equation whose boundary 



Markov modelling of turbulence 83 

conditions (44) are also homogeneous. The normalization condition (45) makes the 
system globally non-homogeneous, and the trivial solution not acceptable. Moreover, 
condition (46) makes the system integro-differential and nonlinear. This last condition 
creates a relation between the value of C, and the model parameters c and y. The 
nonlinearity is managed by fixing apriori the value of C,, and the value of y. Then, the 
corresponding value of the parameter c, such that condition (46) is satisfied, is 
determined by an iterative procedure, in which, at each step, the linear system (43)-(45) 
is solved. The value of C, is fixed to its experimental value C, = F; then, for each y, 
if the solution exists, we have a corresponding value of c. 

The main problem is thus reduced to the solution of a linear partial differential 
equation (43). A steady solution such as that cannot be obtained as the asymptotic 
solution for large times of the corresponding unsteady equation (derivable from (27)). 
We verified numerically that this unsteady system does not tend to any asymptotic 
steady state. In fact, most of the arguments developed in 93 become meaningless when 
the flow is not statistically stationary, the transient evolution has no physical meaning 
and cannot drive to the actual steady solution; also this difficulty may be related to the 
unbounded domain in which (4b), even in the case of Eulerian stationarity, cannot 
reach a steady asymptotic solution. Equation (43) is a second-order elliptic equation. 
The coefficients of the second-order derivatives are constants whereas the coefficients 
of the remaining terms vary with x and y ;  in particular they grow (in absolute value) 
with the distance from the origin. It was shown in the asymptotic analyses of 95, that 
far from the origin the second-order terms become negligible so that the elliptic 
character of the equation is lost. When the {x,y)  space is made discrete, the linear 
partial differential equation (43) transforms onto a large algebraic linear system. The 
large dimension of the linear system makes the use of direct methods not applicable (if 
the x,y domain is transformed onto a 200 x 200 grid, then the linear system dimension 
is 40000 x 40000). The corresponding matrix is five-diagonal, non-symmetric, non- 
diagonal dominant, and badly conditioned reflecting the ill-behaviour described above. 
Actually, the matrix tends asymptotically, for large u, to be singular. 

After an extensive series of numerical analyses with several iterative techniques 
which all failed to converge, it was found that the system could be solved by using the 
Bi-Conjugate Gradient Stabilized method (BiCGSTAB, van der Vorst 199 1) combined 
with using incomplete decomposition (Meijerink & van der Vorst 1981) as 
preconditioning technique. 

With this method the solution is found to be very stable and independent of the 
discretization parameters. The results presented here have been obtained in the finite 
domain {x, y }  = {( - 30,30) x (0,30)} discretized on a 200 x 120 stretched grid. The 
same results were obtained on the same domain starting from a 60 x 40 grid, and in 
smaller domains, excluding boundary effects. In particular, as can be seen from the 
characteristics curves in figure 1, and from the solution in figure 2, boundary effects at 
large negative values of x are transported at smaller (in absolute value) values of 
positive x. The solution has been also verified, aposteriori, to satisfy (43) with a relative 
error smaller than lops in the whole integration domain. The integral equations (47) 
have been verified (by two-dimensional numerical integration of the solution) with a 
maximum error smaller than 1 %. 

The parameter y has been fixed, initially, to the value y = $. This ensures the isotropy 
of the forcing term (a = 6 )  which appears, physically, as the most reasonable first 
choice. We found that the appropriate parameter for ensuring condition (46) is given 
by c = 28. The three-dimensional probability density function Y ( x , y )  is reported in 
figure 4. Equi-probability curves are plotted with continuous lines for Y = lo-", 
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FIGURE 4. Three-dimensional Eulerian probability density function, with parameters c = 28, y = 4. 
Horizontal and vertical axes represent, respectively, the longitudinal and the module of the 
transversal normalized velocity increments. Equi-probability curves are shown by continuous lines at 
levels lo-", IO-lO,. . . , dashed lines are intermediate. 

. . . , lo-*. At small values of u the distribution is close to Gaussian (contour lines are 
approximately ellipses) then, moving from the origin, the non-symmetric behaviour 
appears significant, and the tails of the distribution begin to take the asymptotic shape 
shown on figure 2. The vectorial shape contains the non-trivial dependence among 
different components of the velocity increments present in (19) and (22), including the 
statistical dependence between longitudinal and transversal components (1 7) and (23). 
Accurate experimental measurements of the three-dimensional probability distribution, 
which can be compared with the present results, are at present not available but are 
technically possible (Praskovsky 19923 ; Thoroddsen & Van Atta 1992) and certainly 
needed for advancing the theory. The major difficulty in experimental comparison is 
given by the large amount of data required to build three- and even two-dimensional 
probability distributions with good resolution in the tails of the distribution. Work is 
currently in progress to realize extensive measurements. A large amount of data can 
also be obtained by high-resolution numerical simulation (Jimenez et al. 1993), even 
though these are still limited to small Reynolds numbers and do not present a 
substantial inertial range. In particular, in figure 5 we report the corresponding joint 
probability density of the longitudinal velocity increment and one transversal 
component &. This distribution is easier to measure, because it  involves only two 
components of velocity increments in known directions. 

In order to make some experimental comparisons, we report, in figure 6, the one- 
dimensional probability density function of the longitudinal component of velocity 
increments. Since from the theory we have the right moments (2)  = 2 and (x3) = 
-0.8, we can observe the asymmetry with respect to the corresponding Gaussian 
distribution (dashed lines), and asymptotic exponential tails. This distribution can be 
compared with detailed experimental measurements (Gagne et al. 1988 ; Kailasnath et 
al. 1992; Praskovsky 1992a) of the same function and with numerical results by direct 
simulation (Vincent & Meneguzzi 1991). The global shape differs from experiments in 
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FIGURE 5. Two-dimensional Eulerian probability density function, with parameters c = 28, y = i. 
Horizontal and vertical axes represent, respectively, the longitudinal and one component of the 
transversal normalized velocity increments. Equi-probability curves are shown by continuous lines at 
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FIGURE 6. One-dimensional Eulerian probability density function of the longitudinal normalized 
velocity increment, with parameters c = 28, y = 4. The corresponding Gaussian distribution is shown 
by a dashed line. 

the following aspects: this model gives a density which decays more rapidly at 
moderately large values of x, whereas the exponential tails, also present in experiments, 
decay slower (slopes being about one-third smaller than those of experimental tails). 
Also, experimental tails slopes are not unique, but depend on the distance r between 
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c y (x4) (xi) (x6) 

28.0 5 12.79 -14.88 149.3 
18.5 1 12.73 -14.69 144.9 
12.5 2 12.64 -14.32 142.1 
9.5 3 12.59 -14.12 140.6 
6.5 5 12.53 -13.83 138.6 

TABLE 1. Parameters used in the Eulerian numerical solutions, and one-dimensional statistics of the 
Eulerian probability density function for the longitudinal component of the velocity increment. 

measuring points, reflecting the intermittency correction to similarity. The right and 
left slopes are in the same ratio (1.1-1.5) as in experiments. These descriptions are 
reflected quantitatively in the differences in the statistics. The fourth-order moment 
obtained is (x4) z 12.8 while the measured experimental value is 20-30, similarly we 
get (x6) z 150, compared to the experimental value 500-2000. On the other hand, 
because of smaller tail slopes, very high moments are expected to be larger than 
experiments. 

The present model ensures theoretically the proper values for the statistics up to the 
third moments while higher-order statistics follow. In particular, the choice of 
Gaussian random forcing appears certainly to be reductive for the turbulence; 
nevertheless it represents the necessary first approach in the Markovian representation. 
The slopes of the exponential tails, and the values of high-order moments, depend on 
intermittency which we have not considered in this paper. Intermittency corrections 
can be included by using a more general forcing and, possibly, a modification of the 
relaxation term. 

Several other pairs of the parameters c and y have been tested to analyse the 
dependence of the model on them. In table 1 the different pairs of parameters, all 
corresponding to the same value of C,, are reported, and the corresponding moments 
of order 4 to 6 of the longitudinal velocity difference are listed. From these figures we 
can see that such statistics do not depend significantly on these parameters. Actually, 
none of the solutions differs significantly, either in the three-dimensional shape or 
quantitatively (differences of a few percent) up to very low values of the probability, 
where smaller values of the parameter c correspond to slightly higher slopes in the tails. 
Moreover, we found that for y smaller than about 0.3 the probability takes negative 
values, which means that for such parameters the Eulerian flow is not realizable. Also, 
we were not able to find the solution corresponding to the model of pure diffusion in 
velocity space discussed in Monin & Yaglom (1975, 52); this is not a proof but does 
cast doubt on the realizability of such a model. 

7. Lagrangian numerical results 
The results on the Lagrangian probability distributions have been obtained by 

simulation of trajectories from the Markov model described in 54. Time integration is 
performed with the Milshtein (1974) scheme which allows an O(At) pathwise accuracy 
and O( 1 / n )  mean-square convergence, II being the number of trajectories reproduced 
(Pardoux & Talay 1985). 

The problem is made dimensionless by normalizing with the initial separation of 
particles ro, such that r(0) = ro . [ l  1 11, and the rate of dissipation c. The initial relative 
velocity is not influential and fixed at u(0) = 0.  The integration time step has been 
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C Y 4 4 
28.0 0.260 3.45 
18.5 1 0.207 2.89 
9.5 3 0.122 1.97 
6.5 5 0.083 1.50 

TABLE 2. Parameters used in the Lagrangian simulations, and calculated global dispersion 
coefficients for the square module of particle distance, and of relative velocity. 

chosen constant at At = 0.05 which has shown not to influence the final statistical 
results even when varied by one order of magnitude. The final statistics has been 
extracted at t = 1000 using n = lo5 trajectories. The asymptotic behaviour given by (7), 
theoretically expected for t 9 I ,  is observed for t 

The global dispersion coefficients of the Richardson law in (7) are reported in table 
2 for the Lagrangian simulations performed. As experimental estimate for the constant 
A ,  has been given by Tatarski (1960) who obtained values ranging from 0.06 to 0.45, 
even though errors can be large. The value A ,  = 0.26 obtained here is also comparable 
with the value A ,  = 0.1 & 0.05 obtained in the simulations by Fung et al. (1992). These 
were obtained by using a simplified representation of a homogeneous turbulent flow as 
the superposition of unsteady random Fourier modes, such that incompressibility is 
automatically satisfied, and the energy over modes is distributed in agreement with 
second-order spatial statistics. 

The Lagrangian one-dimensional probability density functions for one component 
of the particle separation rx ,  of relative velocity uXr and for the longitudinal velocity u,, 
are reported in figure 7(a)-7(c), respectively, at t = 1000, in correspondence of the 
parameters c = 28, y = 5. These variables are normalized by dividing by the square 
roots of t t 3 ,  et, and et, respectively, as dictated by (7). The corresponding Gaussian 
distributions are reported with dashed lines. In order to indicate quantitative 
information, the statistical characteristics up to sixth order are listed in table 3.  The 
probability distributions are sensibly different from Gaussian. In particular the 
distribution of particle distance appears more similar to an exponential distribution, 
sharper than Gaussian at the origin, and with exponential tails. The probability 
distribution of relative velocity is closer to Gaussian, for small values, and decreases 
more slowly asymptotically. The tails appear close to exponential, but more detailed 
experiments may be necessary to correctly evaluate the behaviour. Qualitatively 
analogous behaviour has been observed for the other values of the parameters c and 
y. It should be noticed that a preliminary simulation with y = 0 (a value which appears 
forbidden from the Eulerian analysis) gave Gaussian distributions for r ,  and u,, whilst 
other trials with negative values of y gave distributions with opposite behaviour (less 
sharp than Gaussian at the origin, and rapidly decaying tails). 

It is of interest to notice the shape of the probability density for the longitudinal 
relative velocity, u,(t) = ui( t )  ri ( t )  r-'(t). It has a positive mean, and a positive skewness, 
contrary to the negative skewness of the Eulerian longitudinal velocity. This gives a 
possible picture of the turbulent dispersion process, in which fluid particles move 
approximately together for most of the time, and are impulsively separated when one 
particle falls into an internal jet-like motion. 

10. 
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FIGURE 7 One-dimensional Ldgrangian probability density function of one component of (a )  the 
vectorial distance between two fluid particles, (b) the relative velocity between two fluid particles, and 
(0 the longitudinal relative velocity between two fluid particles, with parameters c = 28, y = + The 
corresponding Gaussian distribution is shown by a dashed line 



Markov modelling of turbulence 89 

n ( ( r , l ( 4 ) " >  ( (u , l (4 ) ">  ( ( u , l ( 4 ) n >  
1 0 0.003 0.641 
2 0.086 1.150 1.384 
3 0 0.009 2.476 
4 0.037 4.665 6.797 
5 0.00 1 -0.018 18.597 
6 0.037 36.380 63.020 

TABLE 3. One-dimensional large-time asymptotic statistics for the Lagrangian probability 
distributions of one component of the particle distance, one component of the relative velocity, and 
longitudinal velocity, obtained from numerical simulation with parameters c = 28, y = $. 

8. Discussion 
The representation of fluid particle motion by Lagrangian stochastic models is very 

attractive because of its simplicity and theoretical clarity, but it suffers from the 
difficulty of comparing the results with theoretical and experimental data. In the 
present work, an Eulerian representation has been derived in correspondence to the 
Lagrangian Markovian modelling for the relative motion of two particles in the inertial 
range of a turbulent flow. This approach permits the verification of the realizability of 
the corresponding Eulerian flow field, as well as the determination of its statistical 
characteristics which, in this way, can give information about the accuracy of the 
stochastic modelling without involving direct Lagrangian measurements. The choice of 
relative motion permits the introduction of results from the theory of locally 
homogeneous and isotropic turbulence. It is shown that stochastic models can be 
constructed in such a way that they will automatically satisfy known Eulerian results. 
In particular, a simple model, with local relaxation and Gaussian forcing, has been 
presented which contains the condition for incompressibility, classical similarity 
scaling, the Eulerian exact formula derived from the Navier-Stokes equation on the 
third-order structure function, and the Eulerian experimental data for the second-order 
moments. Numerical simulations of the Markovian model have shown that the 
Lagrangian probability distribution of particle separation and relative velocity departs 
significantly from Gaussian and presents exponential asymptotic tails. The longitudinal 
relative velocity distribution elongates towards positive values (positive skewness) 
while the opposite occurs with the Eulerian distribution. These results give a picture of 
an intermittent turbulent dispersion which may be related to the presence of internal, 
jet-like, turbulent structures. 

The Eulerian analysis imposes a hierarchy of restrictions, which must be added to 
other global limitations (Thomson 1987), in the definition of a Lagrangian model which 
can be closer to representing the physics of real turbulence. Combination of such 
consistent modelling with single-particle, or particle-centroid, models, as extensively 
described by Durbin (1980) and Thomson (1990), will improve the representation of 
complete two-particle dispersion ; this fact will permit the computation of the mean 
concentration and concentration variance of a passive scalar advected by turbulent 
motion. The model is focused on inertial-range turbulence, while extension to large- 
scale flow can be introduced using a large-scale relaxation time (Durbin 1980; Novikov 
1986). 

Also, in correspondence with the Lagrangian stochastic model, the partial differential 
equation of the three-dimensional Eulerian probability distribution of velocity 
increments has been obtained. The solution represents, statistically, the Eulerian flow 



90 G .  Pedrizzetti and E. A .  Novikov 

in which the particles, moving as dictated by the stochastic process, are dispersed. This 
solution, found numerically, contains the condition of incompressibility and the 
complex statistical dependence among vectorial components of the velocity field up to 
third order. 

The Eulerian probability distribution shows an articulated three-dimensional shape 
which we hope will stimulate experimental measurements. The one-dimensional 
probability distribution of the longitudinal velocity increments has been compared 
with existing data. The first three moments are in perfect agreement because they are 
satisfied exactly from the theory, higher-order moments are significantly smaller and 
the tails of the distribution, even though exponential, present an initially larger and 
asymptotically smaller slope than experiments, while the slopes of the right and left 
sides conserve the same ratio as experimentally observed. However, it has been shown 
that high-order statistics agreement, including intermittency corrections, can be 
introduced hierarchically in the model. In particular, the use of Gaussian forcing 
represents a starting point but is certainly inadequate to reproduce high-order statistics 
of turbulence. Improved modelling will have to consider a more general expression for 
random forcing, and, possibly, for the relaxation function, to be able to satisfy higher- 
order statistics which will take into account intermittency of the dissipation rate 
(Monin & Yaglom 1975; Novikov 1990) and other theoretical results from the 
Navier-Stokes equations (Novikov 1991,1993). Also, data from extensive experimental 
measurements, and from high-resolution numerical simulations must be used in 
support and completion of the theoretical arguments. 
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Appendix. Connection between Lagrangian and Eulerian description of 
turbulence (Novikov 1969 b) 

averaged &functions. The expression 
The probability distribution of a random variable can be expressed with the help of 

P(x)  = ((%-Y)) (A 1) 

defines the probability density of the variable x, and the average operation is assumed 
over the ensemble of all possible realizations y .  From (A 1) the moments of the variable 
y can be computed from 

( y " )  = l x " P ( x )  dx = 

Consider the Lagrangian joint probability distribution at time t of a variable c and 
the positions A?'), . . . ,A?') of n fluid particles that are initially in positions a('), . . . , a(n) 
respectively. It can be written as 

PL(b, S1), P', . . . , A?") I t ,  a"', a@), . . . , a'n' )  

= (8(SL(f ,  a'", . . . , a'")) - a) fi S(y(")(t, a(")) -A?)) 
nz=l 
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where S,  represent the value assumed by the variable a on fixed particles and y c m )  
corresponds to trajectories of these particles. 

Under the hypotheses that (i) the fluid is incompressible, which means that the 
Jacobian 

and that (ii) the boundary of the flow is independent of the fluid motion we can prove 
that 

J m=l  

where the right-hand side is the Eulerian probability distribution of the variable ts at 
time t dependent on the position x('), . . . , x ( ~ )  of n points fixed in space. 

Theorem (A 5 )  states that the Eulerian probability density of a variable, at a certain 
time dependent on the position of points in space, is given by the integral of the 
Lagrangian probability over the initial positions of all fluid particles that at that time 
pass through such positions. 

Proof. The Eulerian probability is defined by 

P,(a 1 t ,  x(1), . . . , x(n))  = ($(S,(t, x(1), . . . , x ( n ) )  -a)), (A 6) 

where S ,  represent the value assumed by the variable a on fixed points. The relation 
between Lagrangian and Eulerian values of the variable is obvious: 

S,(t, dl), . . . , a'n') = S,(t, x(l), . . . , X(%)). 
I 

Rewrite the integral on the left-hand side of (A 5 )  using definition (A 3). The averaging 
operator can be put outside of the integral, because of the condition (ii). Changing the 
integration from da to dy and using (A 3), (A 4) and (A 7), gives 

0 

A generalization for the case of variable density has been presented by Novikov (1986). 
The same argument is valid when we consider the relative motion of two fluid 

particles. 
Consider the relative position of two particles r i ( t )  = &(t, a) -Xi(t, a') and their 

relative velocity ui(t) = K(Xi(t, a)) - K(Xi(t ,  a')), with ro = a -a'. The theorem (A 5 )  
can be rewritten as 

PL(u, r I t ,  ro) dro = PE(u I t, r),  (A 8) I 
which can be proven by using the previous theorem. From (A 3) and (A 5) ,  with 11 as 
the a-variable, on integration over a, we write 

P,(u 1 t ,  r )  = PL(u, x, x' } t ,  a, a') da da' I 
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from the definition (A 3), and eliminating the variable a :  

G. Pedrizzetti and E. A .  Novikov 

= I( S(uL - u)  S(y - x -a) S(y’ - x’ -a) ) da dr, 

c 

R E F E R E N C E S  

CHHABRA, A. B. & SREENIVASAN, K. R. 1992 Scale-invariant multiplier distributions in turbulence. 
Phj’s. Rev. Lett. 68, 2762. 

DOP, H. VAN, NIEUWSTAD, F. T. M. & HUNT, J. C. R. 1985 Random walk models for particle 
displacements in inhomogeneous turbulent flows. Phys. Fluids 28, 1639. 

DURBIN, P. A. 1980 A stochastic model of two-particle dispersion and concentration fluctuation in 
homogeneous turbulence. J .  Fluid Mech. 100, 279. 

DURBIN, P. A. I983 Stochastic differential equations and turbulent dispersion. N A S A  Rejerence 
Publication 1103. 

FLING, J .  C. H., HUNT, J. C. R., MALIK, N. A. & PERKINS, R. J .  1992 Kinematic simulation of 
homogeneous turbulence by unsteady random Fourier modes. J .  Fluid Mech. 236, 281. 

GAGNE, Y., HOPFINGER, E. J. & FRISH, U. 1988 A new universal scaling for fully developed 
turbulence : the distribution of velocity increments. In New Trends in Nonlinear Dynamics and 
Pattern-Forming Phenomena: The Geometry of Nonequilibrium (ed. P. Coullet & P. Huerre). 
NATO AS1 Series B, vol. 237, p. 315. Plenum. 

GIFFORD, F. G. 1959 Statistical properties of a fluctuating plume. Adv. Geophys. 6, 117. 
JIMENEZ, J . ,  WRAY, A,, SAFFMAN, P. G. & ROGALLO, R. S. 1993 The structure of intense vorticity in 

homogeneous turbulence. J .  Fluid Mech. 255, 65. 
KAILASNATH, P., SREENIVASAN, K. R. & STOLOVITZKY, G. 1992 Probability distribution of velocity 

increments in turbulent flows. Phys. Rev. Lett. 68, 2766. 
KAMPEN, N. G .  VAN 198 1 Stochastic Processes in Physics and Chemistry. North-Holland. 
KOLMOGOROV, A. N. 1941 a The local structure of turbulence in an incompressible viscous fluid for 

very high Reynolds number. Dokl. Akad. Nauk. S S S R  30, 301. 
KOLMOGOROV, A. N. 1941 b Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. 

Nauk. S S S R  32, 16. 
KOLMOGOROV, A. N. 1962 A refinement of previous hypotheses concerning the local structure of 

turbulence in a viscous incompressible fluid at high Reynolds number. J .  Fluid Mech. 13, 82. 
MEIJERINK, J. A. & VORST, H. A. VAN DER 1981 Guidelines for the usage of incomplete 

decompositions in solving sets of linear equations as they occur in practical problems. J.  Comput. 
Phjv. 44, 134. 

MENEVEAU, C. & SREENIVASAN, K. R. 1987 Simple multifractal cascade model for fully developed 
turbulence. Phys. Rev. Lett. 59, 1424. 

MILSHTEIN, G. N. 1974 Approximation calculation of stochastic differential equations. Theory Prob. 
Appl. 19, 557. 

MONIN, A. S. & YAGLOM, A. M. 1971 Statistical Fluid Mechanics I .  MIT Press. 
MONIN, A. S. & YAGLOM, A. M. 1975 Statistical Fluid Mechanics II. MIT Press. 
NOVIKOV, E. A. 1964 Functionals and random force method in turbulence theory. Sou. Phys. JETP 

NOVIKOV, E. A. 1966 Relative diffusion of liquid particles in a turbulent shear flow. Izo. Atmos. 

NOVIKOV, E. A. 1969a Scale similarity for random fields. Sou. Phys. Dokl. 14, 104. 
NOVIKOV, E. A. 1969b Relation between the Lagrangian and Eulerian description of turbulence. 

NOVIKOV, E. A. 1971 Intermittency and scale similarity in the structure of turbulent flow. Appl. 

20, 1290. 

Ocean Phys. 2 (1 l), 736. 

Appl. Math. Mech. 33, 862. 

Math. Mech. 35, 231. 



Markov modelling of turbulence 93 

NOVIKOV, E. A. 1986 The Lagrangian-Eulerian probability relations and the random force method 
for nonhomogeneous turbulence. Phys. Fluids 29, 3907. 

NOVIKOV, E. A. 1989 Two-particle description of turbulence, Markov property, and intermittency. 
Phys. Fluids A 1, 326. 

NOVIKOV, E. A. 1990 The effect of intermittency on statistical characteristics of turbulence and scale 
similarity of breakdown coefficients. Phys. Fluids A 2, 814. 

NOVIKOV, E. A. 1991 Solutions of exact kinetic equations for intermittent turbulence. In Proc. 
Monte Verita Colloquium on Turbulence (ed. T. Dracos & A. Tsinober). Birkauser. 

NOVIKOV, E. A. 1992 Probability distribution for three-dimensional vectors of velocity increments 
in turbulent flow. Phys. Rev. A 46, 6147. 

NOVIKOV, E. A. 1993 A new approach to the problem of turbulence based on the conditional 
averaged Navier-Stokes equations. Fluid Dyn. Res. 12, 107. 

PARDOUX, E. & TALAY, D. 1985 Discretization and simulation of stochastic differential equations. 
Acta Appl. Maths 3, 23. 

PRASKOVSKY, A. A. 1992a Probability density distribution of velocity differences at  high Reynolds 
number. An. Res. CTR,  27. 

PRASKOVSKY, A. A. 1992b Experimental verification of the Kolmogorov refined similarity 
hypothesis. Phys. Fluids A 4, 2589. 

SAITO, Y. 1992 Log-gamma distribution model of intermittency in turbulence. J .  Phys. Soc. Japan 
61, 403. 

SAWFORD, E. A. 1986 Generalized random forcing in random walk turbulent dispersion models. 
Phys. Fluids 29, 3582. 

SAWFORD, E. A. & HUNT, J .  C. R. 1986 Effect of turbulence structure, molecular diffusion and 
source size on scalar fluctuations in homogeneous turbulence. J .  Fluid Mech. 165, 373. 

TATARSKI, V. I. 1960 Radiophysical methods of investigating atmospheric turbulence. Zzv. Vyssh. 
Uchebn. Zaved. 3 Radio$zika 4, 551. 

THOMSON, D. J. 1986 On the relative dispersion of two particles in homogeneous stationary 
turbulence and the implication for the size of concentration fluctuations at large times. Q .  J .  R .  
Met. Soc. 112, 890. 

THOMSON, D. J. 1987 Criteria for the selection of stochastic models of particle trajectories in 
turbulent flows. J .  Fluid Mech. 180, 529. 

THOMSON, D. J. 1990 A stochastic model for the motion of particle pair in isotropic high-Reynolds- 
number turbulence, and its application to the problem of concentration variance. J .  Fluid Mech. 
210, 113. 

THORODDSEN, S. T. & VAN ATTA, C. W. 1992 Experimental evidence supporting Kolmogorov refined 
similarity hypothesis. Phys. Fluids A 4, 2592. 

VINCENT, A. & MENEGUZZI, M. 1991 The spatial structure and statistical properties of homogeneous 
turbulence. J .  Fluid Mech. 225, 1. 

VORST, H. A. VAN DER 1992 BiCGSTAB - A fast and smoothly converging variant of Bi-CG for the 
solution of nonsymmetric linear systems. SIAM J .  Sci. Statist. Comput. 13, 63 1. 

4 F L M  280 




